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Electrostatic Field Effects on a Rotating Liquid
Film Conical Radiator

Hyo Kirn,* S. G. Bankoff,t and Michael J. Miksis^
Northwestern University, Evanston, Illinois 60208

We present a study of the interaction of an electrostatic field with a thin liquid film with a free surface flowing
down the inner wall of a rotating conical radiator due to centrifugal force. First, we examine the effect of the
electric field on the stability of the film flow. Next, several limits of the equations of motion are investigated
analytically, and then compared with an explicit numerical calculation of the equations of motion. Also, we
discuss applications of these calculations to a proposed electrostatic liquid film space radiator.
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pU0d/iJL, Reynolds number
radial distance coordinate from center of
cone
position vector, (r, z)
characteristic unit of time
tU0/L
time
&
characteristic unit of velocity in the x
direction
Vlf
fluid velocity vector
fluid region
velocity component in the r, x, y, z
directions

= vacuum region

= xlL
= distance coordinate along the conical

wall

distance coordinate normal to the wall
axial distance coordinate from the
entrance of the cone
wave number of a disturbance
angle of conical wall with axis of rotation
dielectric constant of the fluid
dielectric constant of the vacuum
HIL
perturbation of h from the uniform
height
fluid viscosity
magnetic permeability
dlL
fluid density
surface tension
dimensionless electric potential along y
= #
&FH
electric potential
electric potential in the fluid
electric potential in the vacuum
angular velocity of cone
complex frequency, cor + icjf

I. Introduction

T HE interaction of an electrostatic field with a thin liquid
film flowing down the thin inner wall of a rotating conical

membrane at a constant angular velocity is investigated here.
The main application is the design of a very lightweight elec-
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trostatic liquid film space radiator (ELFR) whose weight is
expected to be in the range of 2-3 kg/m2. This technique was
proposed by Kim et al.1 as a substitute for present-day space
radiator designs which employ rather heavy armored heat
pipes that can weigh more than 10 kg/m2. Even the advanced
carbon-carbon designs are expected to weigh more than 6.5
kg/m2. The idea is to apply the electrostatic field at a position
where a puncture (say from a micrometeorite) occurs in the
surface of the radiator in order to prevent leakage of the
liquid-metal coolant out of the puncture. Because of the in-
ternal pressure of the heat pipes, punctures by most micro-
meteorites and space debris can be expected to cause leakage
of the coolant. The ELFR internal pressure is 0.1-1.0 Pa, so
that nearly all leakage will be stopped by capillary forces.
However, over a multiyear life, some large punctures can be
expected. It is proposed in these cases to stop the leakage by
applying an internal electrostatic field. The result is that in
addition to the large weight savings, the radiator will be more
reliable (for a long mission within an uncertain meteorite
environment) than heat pipes, which rely on redundancy to
handle loss due to punctures. Several design concepts for the
ELFR can be envisioned.1-3'4 Here we concentrate on the
dynamics of the thin liquid film associated with a particular
design, which is a rotating conical radiator. A similar study
was performed for a liquid film flowing down an inclined plane
wall in the presence of a graviety field by Kim et al.5

We will consider several limits of the physical parameters
in order to understand the basic effect of the electrostatic field
on the film flow, and to establish the feasible working ranges
of the ELFR. This will be done by solving, both analytically
and numerically, models for the film motion in the presence
of an electric field. Several different limits of the equations
of motion are also considered, and we will discuss the impli-
cations of each limiting case. This allows us clearly to identify
simple solutions of the equations of motion, which give us
insight into the dynamics of the film.

II. Formulation
Here we begin our investigation of the effects of the elec-

trostatic field on a liquid film as it flows along the inner wall
of a rotating conical membrane. The liquid is incompressible
and viscous. The film is assumed to be thin compared to the
radius of curvature of the wetted wall. The conical wall makes
an angle p with the axis of rotation (see Fig. 1).

With respect to a uniformly rotating coordinate system, the
dynamical equations in the absence of a gravitational body

force are

dV

V-V = 0

.. + (y-V)V = --Vp + ^ A
dt p p

- 2ft x V - ft x (ft x r)

(1)

(2)

where V is the particle velocity measured in a coordinate
system rotating with a constant ft. The liquid region is defined
by ti(i, z) < r < R0 + z tan ft and -a < £ < $, as shown
in Fig. 1.

The boundary conditions are no-slip along the wall, while
along the free surface at r = fi(t, z) we have the kinematic
condition, zero tangential stress condition, as well as the nor-
mal stress condition (see e.g., Landau et al.6)

2 1 / 2

(3)

Introduce a rectangular coordinate system (x, y) as shown
in Fig. 1. This transformed coordinate system is defined as

r = RQ + x sin ft - y cos
z = x cos /3 + y sin ft

(4)

The velocity components (Vr, Vz) are related to the velocity
components (Vx, Vy) in the transformed system by the rela-
tions

Vr = Vx sin ft - Vy cos ft
Vz = V x c o s f t + V y s i n f t

(5)

The free surface of the film f = fi(i, z) in the axisymmetric
coordinate system can be changed to

f, z) = R0 + x sin ft - h(i, ;t)cos ft (6)

Fig. 1 Coordinate scheme of the rotating flow with x = 0 as puncture
location.

where ti(t, x) is the film thickness in the transformed rec-
tangular coordinate system. In the transformed coordinate
system the liquid domain is defined by — a < x < b and 0
< y < h(i, x).

Above the liquid film there is a vacuum. Within the vacuum
region at H from the wall is /, which is parallel to the x axis
and symmetric about the z axis. Let x = 0 be at the center
of the charged ring along the x axis. Suppose that we define
d as the characteristic thickness of the film and

(7)

If we assume that £ « 1, we have a film which is thin, relative
to the expected length scale of the disturbances. If dIH «
1, the charged foil is very far from the wall ^relative to the
thickness of the film. To leading order in d/H, we can then
assume that the charged ring does not see the film, and the
electrostatic problem for the electric field decouples from the
fluid dynamics problem. The ratio f = H/L is assumed to be
order one.

We will assume throughout that L/R0 is order one. Hence,
the thin axisymmetric film is locally two-dimensional. We will
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also assume that the finite-sized charged foil is very far from
the fluid inlet and outlet points. Together, these assumptions
allow us to approximate the electric field due to the charged
foil by that resulting from a two-dimensional finite charged
foil above an infinite plane, i.e., we assume that field decays
to zero as the magnitude of* gets large. Thus, we can consider
this geometry as in the plane flow case, and the electric field
is determined by solving the Laplace equation

= 0 (8)

for the electric potential <j>(x, y) in the fluid, $y, and for the
electric potential, $v, in the vacuum region above the fluid
but below the charged foil. Vf is defined by 0 < y < h(x, i)
and —a ̂  x < b (later we^will assume that a and b tend to
infinity), where y = h(x, i) is the height of the film above
the inclined wall, Vv is defined by the strip — a < x ^ b and
h(x, i) < y < H. We will use the subscript or superscript /
for quantities in Vf, and the subscript or superscript v for
quantities in VV9 unless no confusion can occur. The boundary
conditions are that

fl) = FH3>(x), for y = H

= 0, for y = 0 (9)

The function <i>(jc) is a given dimensionless function of jc, and
the product FH is a constant with the units of electric poten-
tial. Along y = h(x, i) we have the boundary conditions
that the tangential electric field and the normal displacement
field are continuous

Here the partial derivative is in the direction of the outward
unit normal n to the interface.

The liquid film is governed by the incompressible Navier-
Stokes equations. Letting d be the unit of length in the y
direction, L the unit of length in the x direction, U0 the unit
of velocity in the x direction, £U0 the unit of velocity in the
y direction, L/U0 the unit of time, p't/g the unit of pressure,
F the unit of electric field, and eQ the unit of the dielectric
constant, we can determine the dimensionless equations of
motion. The continuity equation becomes

8VX dVy Vx sin jg - cos j
dx dy R0 + x sin - y cos (H)

while the x and y components of the momentum equation are

dy

cos2j8
Re Ca (R0 + x sin /3 - fy cos /3)2 Re

d2Vy Vx sin /3 cos g - (Vy

(R0

dVy dV

R0 + x sin j8 — f y cos j

1 + sin ]3 - f - cos

1 cos /3
~

(13)

The boundary conditions must still be given. Along the solid
wall, y = 0, we have the no-slip boundary condition

yx = vy = 0 (14)

On the fluid interface, y = h(x, i), we have the kinematic
condition

dt * dx
the continuity of tangential stress

(15)

(16)

and the continuity of normal stress

Ca

R0 + x sin /3 - gy cos /3 dx -}'}dx) J

1 cos j
x sin j8 - £y cos j

dt dx y dy dx

sin /3 cos j6
/te Ca (R0 + x sin p - & cos j8)2 Re

d2Vx 1 a2V^ _ V^ sin2j6 - gT/y sin ff cos j8
a*2 ^2 ay2 (R0 + * sin /3 - £y cos j8)2

sin j cos jS dVx

a*
R0 + x sin j8 - cos j

1 sin

(12)

\dx) dx dx \ dy dx / + ay J

(17)

Here we have set the pressure in the vacuum above the liquid
film to zero. Also we define the dimensionless electric field
as

(18)

with the normal component defined as En = E-n and the
tangential component defined as Et = E-r, where r is the
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unit tangent to the interface. We see from Eq. (17) that the
charged foil suspended above the liquid film only influences
the fluid motion by way of the inhomogeneous term in the
normal stress equation.

The dimensionless constants, Re, Ca, Fr, and K all need
to be specified. Suppose we consider a specific fluid in a given
experimental situation where the only free parameter is the
characteristic velocity U0. Then Re, Fr, and Ca vary linearly
with UQ, while K is inversely proportional to U0. For our
calculations we will take the physical parameters for lithium
at 700 K O = 0.0038;?, cr - 363.2 dyne/cm, and p = 0.493
g/cm3). For fixed electric field strength F, K varies as the
Reynolds number changes.

Equations (11-17) determine the motion of the liquid film.
Initial conditions are still required to solve for the evolution
of the liquid. In addition, there should be an inlet boundary
condition to solve this problem. The entrance length is as-
sumed to be very short and the flow quickly has a parabolic
velocity profile.

III. Linear Stability
Linear stability for liquid film flow down an inclined plane

was studied by Benjamin7 and Yih.8 In the long-wave limit
their result is that the liquid is stable if

Re < I cot(jS) (19)

Our aim here is to generalize this result to include the effect
of the electric field in the rotating system. Assume that the
entrance radius R0 is very large, i.e., R0 » 1. Then from
Eqs. (11-13) the leading-order mass and momentum equa-
tions reduce to the equations of film flow down an inclined
plane,5 and can be used to determine the local stability. In
the long-wave limit, i.e., a —» 0 where a > 0 is the wave
number of the disturbance, with the same analysis as in Kim
et al. ,5 one can show that the uniform flow is stable if

Re < I cot(j8) - f KW

where in the long wave limit

W-

(20)

(21)

For sf > 1, the effect of the electric field is to lower the value
of the critical Reynolds number for linear stability. The unit
of d is also assumed to be constant, although d decreases as
x increases in the real conical flow. Thus, the most unstable
situation occurs at the inlet boundary where the Reynolds
number has the largest value. In order to understand the effect
of the electric field on the stability for larger wave numbers
we solve the resulting linear eigenvalue problem, i.e., a mod-

Fig. 2 Neutral stability curves in the a - Re plane for ft = 0.1 rad,
H = 13h a) K = 110 and Ca = °°, b) K = 0 and Ca = °°, c) K =
110 and Ca = 5.4 x 10~5, and d) K = 0 and Ca = 5.4 x 10~5.

ified Orr-Sommerfeld equation, numerically. The character-
istic unit of velocity U0 is defined as pfl2R0d2 sin p/3fju.

The resulting eigenvalue problem can be solved numerically
by using a shooting method.2'5 We consider a perfectly con-
ducting fluid, i.e., ef = oo. In Fig. 2 we set ]3 = 0.1 rad, H
= 10, and solve the eigenvalue problem. In Fig. 2 we sketch
the neutral stability curves (i.e., c, = 0) in the a — Re plane
for the case of Ca = <*>, i.e., no surface tension, and for Ca
= 5.4 x 10~5. Also in Fig. 2 we sketch the neutral stability
curves for both K = 0, (no electric field) and K = 110. We
see that small Reynolds number flows are stable, while in-
creasing Re for fixed a will cause the flow to become unstable.
Note that the effect of the electric field is to lower the value
of the critical Reynolds number at which the flow becomes
unstable. The critical Reynolds number decreases with in-
creasing p and decreasing surface tension, similarly to the
results of Benjamin7 and Yih.8

IV. Thin-Film Limit
We consider the thin-film limit, £ « 1, of Eqs. (8-17) and

derive a nonlinear evolution equation for the height, h(x, f)
of the film. The film thickness is set to h = 1 at x = —a for
the inlet boundary condition.

A. Order-One Reynolds Numbers

Steady-State Solutions at Leading Order in £
Here, we will determine the steady-state solution at leading

order in f for order-one Reynolds numbers. A similar analysis
for a thin film flowing down an inclined plane, but without
an electric field has been performed by Benney10 and Gjevik,11

and with an electric field by Kim et al.5 The steady-state
solution of Eqs. (11-17) is expressed as a perturbation ex-
pansion in £, e.g.

h(t, x) = h0(x) , x) (22)

On substituting these expansions into Eqs. (11-17), we can
obtain the leading-order equations of motion (assuming £2/
Ca is order one). From the leading-order equations we de-
termine that the leading-order film thickness at steady state
is

R0 - a sin /3
R0 + x sin /3 (23)

where the inlet boundary condition h0 = 1 at x = — a is used.
The leading-order pressure is

= _
Po

sin p dh0\ cos
ReCa \ dx2 R0 + x sin p dx

Re

Fr2

(24)

We see from Eq. (23) that the leading-order film height hQ
continuously decreases from h0 = 1 as x increases and it is
not affected by the electric field. This occurs because there
is no leading-order pressure gradient in the leading order x
direction momentum equation. The leading-order pressure p0
depends on the strength of the electric field. The design of
ELFR requires a negative pressure under the charged foil,
which would stop a leak out of a puncture. For this purpose
we can calculate a critical film thickness h0c from Eq. (24) for
the negative pressure on the wall at y = 0

2K Fr2

Re cos p [1 + (x/Ro)sm (25)
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Here we neglect the surface tension of the fluid (Ca -> oo)
and assume the fluid has perfect conductivity (e/—» °°). To
get a negative pressure on the radiator wall, h0 should be less
than h0c in this analysis.

Solutions on a Long-Time Scale
Suppose we only look for solutions which vary on a long

time scale, i.e., t = 0(l/£), and assume that the velocity
components Vx and Vy are order £. In this limit our results
will be similar to the two-dimensional case of a thin film
flowing down an inclined plane, with the centrifugal body
force replacing the gravitational force.

Two limits involving the placement of the charged foil will
be discussed here. In the first we assume that the electric
potential along y = H depends on the slow x scale, and that
the characteristic length scale in the y direction in the vacuum
region is d. In the second limit we assume that the charac-
teristic length scale in the vertical direction is L, and there-
fore, the thin film is not seen at leading order in £ by the
charged foil. In the first of these limiting cases we find from
the dimensionless version of Eqs. (8-10) that at leading order
in £, the electric potential is a linear function of v, with coef-
ficients which depend on the slow scale x and t. Using the
boundary conditions [Eqs. (9) and (10)] this implies that

3 sin2|3 3

/o - <*> (x)(y/ef){h(*, OKI/*/) - 1] + H}

for 0 < y < h(x, t)

g = <&(*)(! + (y - H){h(x, OKI/*/) -

for h(x, t) < y < H

(26)

(27)

Here we have set the boundaries x = a and b to infinity.
Additional corrections to the electric potential require the
next order correction in h(x, t). The second of the limiting
cases will be discussed below. In the following we will see
that as long as K is assumed to be order one, then we only
need the leading order behavior of <£ in order to determine
h to two orders in f .

The long-time scale solutions will be determined in
two steps. First, let Vx = £VX, Vy = £Vy, t = i/& K = fK,
13 = 0(£), I/o = pto2Rt42/3n, in Eqs. (11-17), and retain
only terms up to order f. Second, note that the scaled conti-
nuity equation allows the use of a stream function ^P, in
terms of which Vx and Vy can be expressed as Vx = (RQ
+ x sin j8 - & cos p)-l(dMdy), and Vy = -(R0 + x sin j8
- fy cos p)~l(dWdx). Expanding ^ in a power series in £
and substituting back into the equations resulting from the
first part, and then solving the equations for the first two
orders in £, we can determine an equation for h(t, x) accurate
to 0(f2) (see Kim12 for details). The result of these calcula-
tions is

dh d . _— \h3 sin - cos j,^l+2±
dx/ J 3 dx

cosjSsinjS 1 sin- - 1 sin

_
R0 dx

dh „ sin2/3 \ h2

— - 3 —-^ x\ - — cos j8 sm jox % / K0

I — — + - cos2Bh
dX dX3 4

d2h

1 cos j3 sin2/3
"

(28)

Here E%n = H(d<l%)/dy ony = h represents the leading order
contribution of the electric field on the thin film. We see from
Eq. (28) that for K order one we only need the leading-order
correction to the normal electric field in order to determine
the h to second order in f. The effect of the electric field
occurs in this approximation only at order £. The value of the
partial derivative of </>% can be determined from Eq. (27). In
Eq. (28) we have assumed that the coefficient f 2/Ca is order
one.

Suppose that H » 1, i.e., the conducting plate is far from
the inclined wall. In this limit we find that E^n = <£(*)• Hence,
the effect of the electric field in Eq. (28) is just the derivative
of a given function of x times h3. Changes in the potential
along the conducting plate are felt explicitly in this limit, but
without accounting for the effect of variations of h on the
electric field. This implies that we should be able to generalize
this limit to the case where the characteristic length scale in
the vertical for the determination of the electric field is of
order L. This will be done shortly.

Now suppose that H is finite. Then we find that the de-
nominator of the term containing K becomes large as h ap-
proaches HI (I — l/£y). This implies that since til (I — l/Sf)
> H, the approximation breaks down and a shock could pos-
sibly form. Additional work needs to be done to show if and
when this can occur.

Suppose we keep only the leading order in f terms of Eq.
(28). For simplicity, assume that the fluid is a perfect con-
ductor, i.e., £f—» oo. Clearly, only the first two terms in Eq.
(28) will be included under the above assumptions. The re-
sulting equation is a nonlinear parabolic partial-differential
equation for disturbances moving toward increasing jc. This
result is independent of the effect of the electric field. Suppose
we assume that K = 0(1) and determine how the electric
field influences the evolution of the thin film at leading order.
The result is (neglecting the capillary terms)

dt
sin j8
-

dh
= 0

(29)

This is the same evolution equation studied in Kim et al.5 for
two-dimensional film flow down an inclined plane.

The above observations of this leading-order unsteady thin
film model for K = 0(1) imply that film flow in the presence
of a finite conducting foil can be a stable process, in that a
disturbance can grow while it is under the charged foil, but
once it passes, the height can stabilize. From the point of view
of the ELFR, this is a positive observation since as long as
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the film flow is able to pass the conducting foil in a continuous
manner the ELFR is operable. Our concern would be the
possibility of the fluid touching the foil or leaving the thin
film limit, and hence, cooling at a rate unpredictable by this
analysis.

Suppose 3> = 1 (for small K) and consider linear stability
analysis of Eq. (29) about h = 1. It is easy to show that Eq.
(29) is linearly stable if cos /3 - $KH2/(H - I)3 > 0. This
result for the linear stability can be expected from Sec. III.

6 sin
dt dx \5 h ) 5 R0 + x sin p h 40

sin /j cos ,
(R0 + x sin

d/i 1 sin L

cos ,
Fr2

2K d(E$2

-

B. Large Reynolds Numbers
We consider the thin film limit with Re = 0(l/£), and select

l/o as the mean velocity of a flow within a rotating conical
wall, i.e., p£l2R0d2 sin /3/3)Li. Assume that Fr2 = £(!/£), while
all the other variables are order one. Under these conditions
we can derive a nonlinear system of evolution equations valid
for the first two orders in £. Unfortunately, it is not system-
atically possible to solve these nonlinear equations. In order
to obtain a simple evolution equation, we use the Karman-
Pohlhausen approximation. This has recently been applied to
other thin-film problems with considerable success.5'13'14

Let R = gRe = 0(1) and note that here the angle /3 =
0(1). Using these assumptions in Eqs. (11-17) the terms to
order £ can be determined. The result is (for sf = o°)

V, sin
dx

dV
dy ^o + x sin

y, sin ft cos ft =

*(R0 + xsinft2*
(30)

for conservation of mass while the momentum equations be-
come

3 q 3 cos /3
" ~

h sin /3
R h2 2 R R0 + x sin j8 h Fr2

where

1 + —sin /3 - - •— cos phi (36)
/vn 2 /vn

• sin p/3Fr2) = 1 (37)

Equation (36) reduces to the two-dimensional plane flow re-
sult for R0 » 1. As in Sec. Ill, we consider this stability
problem from a local point of view, where a leading-order
steady-state solution of Eqs. (35) and (36) exists of the form
h = 1 and q = 1. Again d is to be interpreted as the local
thickness. Letting 77 represent the perturbation of h from the
uniform height, i.e., h ' = 1 + 17, and B = £ cot /3, we can
derive the linearized disturbance equation

12
5 R

dt dx dy dx R

1 sin — cinn — £-2- cos (31)

cos

Integrating the above equations along with their boundary
conditions is clearly difficult, even though they represent only
the leading-order behavior of the thin film. In order to sim-
plify the analysis, we introduce the Karman-Pohlhausen ap-
proximation

(33)

(34)

Vx = ~h \~k ~ 2 \h

where q is defined by

-rJo

To derive the nonlinear evolution equation, one integrates
Eqs. (30-32), then substitutes Eq. (33) into the horizontal
momentum Eq. (31), and finally integrates Eq. (31) in y from
0 to h. Prokopiou et al.13 give additional details. The result
of these calculations is a coupled set of nonlinear hyperbolic
equations for h and q

— ^3. sin p
dt dx R0 + x sin p q + 8'

sin p cos p
(R0 + x sin p)2 hq = 0

(35)

(38)

Looking for a time-harmonic solution proportional to &xp[i(kx
- cot)], where k is the real wave number and a) = wr 4- /co,
is the complex frequency, we find from Eq. (38) the dispersion
relation

12
—

6^^//2 1
/?(// - 1)3J

. 9A:
(39)

The condition for onset can be determined from Eq. (39) by
requiring that the first and second derivatives of a>h with re-
spect to /:, vanish exactly. The result of this calculation is that
the critical values of the Reynolds number Rc, the wave num-
ber kc, and the leading-order behavior of a)r are given by

R = B - (H - I)3 ' kc = 0, cor ~ 3k (40)

The above results without the electrostatic field have the same
forms as in the case of thin film flowing down an inclined
plane discussed by Prokopiou et al.13

It is of interest to consider the steady-state solutions of Eqs.
(35) and (36) for RQ large. In this limit, note that Eq. (35)
implies q = 1. Then the steady-state solution determined from
Eq. (36) is

cos(£)cos(/3) _ ____ ___
Fr2 R (H -

dO
R (H - h)2 dx

BFr2

(41)
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Here, we have used the limiting form of .Ev
n as given by Eq.

(27). This steady solution will have a point where there is
infinite slope, a shock, when the coefficient of the first de-
rivative term is zero. Hence, we can determine a critical height
as a function of the parameters. Solving for this critical height
hc involves solving a sixth-order polynomial in h. In the limit
where H » 1, we find using Eq. (37) that

*, \6R

~ ~ 3B - (42)

This result, but without the effect of the electric field (K =
0), can be also found in Rahman et al.14 The effect of the
electric field is to raise hc for $> > 0. We note that Eq. (42)
relates the Reynolds number to the critical film thickness,
with hi being linearly proportional to R. As the Reynolds
number decreases, the value of hc decreases, at which we can
expect a shock. Using Eq. (37) we can express this result in
terms of Fr and a critical Froude number can be identified.

The steady-state solution of the Karman-Pohlhausen ap-
proximation of Eqs. (35) and (36) is shown in Fig. 3. In order
to simulate a slowly varying potential, we set <E> = exp( - 10(k2)
in Eq. (27) and set E\)n = //(d</>£%). This potential has the
slowly varying form of the assumptions. For boundary con-
ditions we set ft = 1 and q = 1 at a sufficient distance from
the foil while the effect of the electric field is very small. In
order to simulate an experimental situation, we set /3 = 0.1
rad, fl0 = 6 cm, 11 - 3 rad/s, f - 0.0033 and F = 15 kV/
cm at Re = 30.3, 242.0, or F = 18 kV/cm at Re = 472.6,
with the physical properties of lithium at 700 K. Then we vary
the upstream depth of the film d, which varies the mean
velocity C/0, and therefore, Re, K, and H. In Fig. 3 we plot
the two cases of Re = 242.0, 472.6, which correspond to the
values of K = 22.5, 26.0, and the values of H = 10.0, 8.0,
respectively. The film thins with increasing Re, and the effect
of the electric field is to cause a sudden decrease, then an
increase, and finally a decrease of the film height under the
foil. As Re decreases, the steady-state profiles can change.
For example, the steady-state profile for Re = 30.3 (not plot-
ted) has the film thickening and slowing down with increasing
distance from the foil. These are large Reynolds numbers,
but they illustrate the predictions of this theory. In particular,
we find that the percent perturbation of the interface de-
creases as the Reynolds number increases, i.e., as dincreases.

Finally, one could ask if the steady solution given by Eqs.
(35) and (36) is linearly stable. This could be checked by
linearizing Eqs. (35) and (36) about steady solutions in ft and
q. This calculation is similar in spirit to the stability analysis
for Sec. Ill, but now the equilibrium solution is only known
from a numerical integration. Also, the periodicity assump-
tion used in Sec. Ill is no longer valid since we are solving
the problem on a semi-infinite interval with the boundary

1.1

0.5

——— Re= 242.0
------ Re= 472.6

0.0
x

Fig. 3 Steady-state solutions of the Karman-Pohlhausen model with
zero surface tension, F = 15 kV/cm, )8 = 0.1 rad and with Re =
242.0, 472.6.

condition, ft = 1 and q = 1, given at some finite negative
value of jc. Hence, stability is related to the size of the interval
of integration. By looking for solutions of this linear problem
proportional to exp(cf) an eigenvalue problem for c can be
identified. This eigenvalue problem has been solved, and only
negative values of c have been determined for all ranges of
the parameters we have considered. Therefore, it appears that
the steady (continuous) solutions of the Karman-Pohlhausen
approximation are linearly stable.

V. Numerical Solutions
In the previous section we considered several asymptotic

solutions of the system [Eqs. (8^17)]. This approach was
taken because the system represents a complicated nonlinear
moving boundary problem whose solution involves solving
the Navier-Stokes equations coupled to the electrostatic equa-
tions. A complete numerical solution of this problem is still
very difficult. Here we will consider the limit where H » 1,
so that the charged foil is far away from the wall of the flowing
film. As noted before, this decouples the electrostatic problem
from the fluids problem. Hence, if a solution of the electro-
static problem can be determined, we need only solve Eqs.
(11-17), where E% now represents a known forcing function.
We solve this moving boundary problem for the Navier-Stokes
equations by using a modification of the code SOLA.15 SOLA
uses a finite-difference technique based on the Marker-and-
Cell method to solve the two-dimensional equations of motion
of a fluid written in terms of Cartesian coordinates. Hence,
to solve Eqs. (11-13), some additional terms must be inserted
into the original version of the code, consistent with the Marker-
and-Cell technique.16 We have used this code since it is easily
modified for the presence of the electric field.

Suppose that the fluid is a perfect conductor and that O at
y = H is given by

1 for - / / 2 < x < / / 2

0 otherwise
(43)

Here, we again assume that a and b tend to infinity, so the
electrostatic problem is two-dimensional and defined on an
infinite interval. The solution of this electrostatic problem can
be found in Morse and Feshbach.17 In terms of the normal
component of the electric field along the wall y = 0 we have

1 + exp[-(7T/f#)(//2 - x)]

I
I + exp[-(7r/#f)(//2 - x)] (44)

Equation (44) can now be used in Eq. (17), and the resulting
system can be solved numerically. We note that while we
needed to have a slowly varying electric field in order for our
thin film analysis to be valid, this assumption is not necessary
here since we will solve the complete Navier-Stokes equa-
tions. The only requirements for the validity of this calculation
is that H » 1 and L/R0 is order one.

Only solutions of the approximate long-wave-length model
[Eqs. (35) and (36)] will now be compared with the solutions
of the full system [Eqs. (11-17)]. The ELFR with small /3
requires large Reynolds numbers in order to obtain negative
pressures along the radiatior wall y = 0, and hence, the lu-
brication model is not valid in this case. For larger /3, much
thinner films can be used, so that the lubrication model is
applicable. We use the normal electric field as given by Eq.
(43). This clearly violates the slowly varying assumptions of
the derivation of the approximate models, but it will illustrate
the usefulness of these models. Clearly, solving Eqs. (35) and
(36) is a much easier and faster task than solving the moving
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boundary problem [Eqs. (11-17)]. Hence, if the approximate
models can be shown to make good predictions in the range
of interest of the parameters, this justifies their usefulness.

The effect of surface tension is neglected. This should be
a reasonable approximation as long as there are no regions
of large curvature on the free surfaces. In a shock region (i.e.,
where the slope of the interface tends to infinity), surface
tension is important and should not be neglected. However,
our main concern is to determine how well solutions of the
approximate models compare with the solutions of the full
system of equations, and in particular, how well they predict
the steady state. Hence, transient phenomena, unless destruc-
tive to the ELFR, are not important to us. The approximate
models will be solved by using a two-step Lax-Wendroff method
with diffusion and antidiffusion.18

Set F = 15 kV/cm, p = 0.1 rad, d = 0.1 cm, #0 = 6 cm,
£1 = 3 rad/s, and take the other physical properties for lithium
at 700 K. This gives Re = 30.3, Fr = 1.0, and K = 45.1. Let
H = 20i and / = -h. Initial conditions are given by the steady-
state shapes of the Karman-Pohlhausen method [Eqs. (35)
and (36)] without the electric field. At t = 0, the electric field
is turned on and a disturbance is generated. In Fig. 4a we
plot the dimensionless film thickness h as a function of x for
tn — n(0.01), n = 0, . . . , 6. Here, the profile develops into
a shock under the foil. We note, as in the steady-state solu-
tions illustrated in Fig. 3, the initial depression and then rise
of the surface under the charged foil. In Fig. 4b we plot the
dimensionless bottom pressure as a function of time for this
case at the same time steps. As noted in Sec. II, the pressure
in the vacuum above the film is set to zero and the pressure

below the wall is assumed to be zero for the ELFR. Hence,
if a puncture were to occur directly below the foil at x = 0,
the pressure in the fluid on the bottom of the wall and directly
above the puncture should be negative in order to stop a leak.
From Fig. 4b the pressure becomes negative, and therefore,
this is a good operating set of parameters.

How well do the approximate models compare with the
exact numerical predictions? In Fig. 4c we plot the solution
of the time-dependent Karman-Pohlhausen model [Eqs. (35)
and (36)]. Note the surface deformation trend is very similar
to that of the exact answer, where the initial condition is the
steady-state film thickness of the Karman-Pohlhausen model
without an electric field. In Fig. 4d we plot the bottom pres-
sure predicted by Eqs. (35) and (36). These compare very
well. Hence, this model gives good predictions at this Rey-
nolds number, Re = 30.3. For h = 1 and q = 1 at the
upstream boundary, the steady-state solution of the Karman-
Pohlhausen model with the electric field at Re = 30.3, pre-
dicted a shock under the foil. Without the electric field, as
noted by the initial data shown in Fig. 4a, the height is de-
creasing and continuous. Hence, the effect of the electric field
at this Reynolds number is to increase the height above the
critical value required for a shock to occur in the Karman-
Pohlhausen model, and therefore, no continuous steady state
exists.

In Fig. 5, the initial d is doubled from that in Fig. 4, while
the other parameters are the same. The effect of this is to
raise the Reynolds number and to decrease K. Now we have
Re = 242.0, Fr = 2.8, K = 22.5, and H = 10. In Figs. 5a
and 5b we plot the height h and pressure, respectively, for tn
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Fig. 4 Free surface profiles for t = w(0.01), n = 0, . . . , 6 with F = 15 kV/cm, ft = 0.1 rad, d = 0.1 cm, il = 3 rad/s, <r = 0, Re = 30.3,
K = 37.6, H ~ 20, and the other parameter for lithium at 700 K.



KIM, BANKOFF, AND MIKSIS: FIELD EFFECTS ON A CONICAL RADIATOR 253

-0.5 0.0

1.1

0.5
-0.5 0.0

x
0.5

a) h vs x as determined by Eqs. (11-17) c) h vs x as determined by the Karman-Pohlhausen model [Eqs. (35)
and (36)]

0.2 0.2

W
g o.i
CQ
CQ

o
H 0.0 -
o
CQ

-0.1
-0.5 0.0 0.5

x
b) p vs x as determined by Eqs. (11-17)

1.1

-0.1
-0.5 0.0

x
0.5

d) p vs AT as determined by the Karman-Pohlhausen model [Eqs. (35)
and (36)]

0.5
-0.5

e) h vs x as determined by the steady-state Karman-Pohlhausen model
(——) and the last computed time step shown in Fig. 6a (-----)

Fig. 5 Free surface profiles for t = n(0.01), n = 0, . . . , 15 with F = 15 kV/cm, ft = 0.1 rad, d = 0.2 cm, ft = 3 rad/s, o- = 0, Re = 242.0,
K = 22.5, H = 10, and the other parameter for lithium at 700 K.

= n(O.Ol), n = 0, . . . , 15. As in the smaller Re case of Fig.
4, the height of the film under the foil will at first decrease
with increasing x and then increase. Note that the film will
now rise up to about 15% of its equilibrium height. The peak
height at steady state is at around h = 0.83, which is much
smaller than the results in Fig. 4, because the increased inertial
force makes the effect of the electric field weak. As time
increases, a disturbance begins along the precursor trough
and develops into a shock. This event is harmless since it
occurs downstream of the foil and has a small amplitude.

Hence, it will be washed away. In Figs. 5c and 5d we plot the
results from the Karman-Pohlhausen model. There are qual-
itative similarities in the shape and speed of propagation of
the disturbance. Also, the pressures compare very well. There
are some quantitative differences. In particular, the shock
occurs at an earlier time when compared to the exact nu-
merical solution as plotted in Fig. 5a. We have only computed
the time-dependent problem up to the time of formation of
the shocks. Since the steady-state solution without a shock is
approached, it would be enough for us to know just this
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steady-state result. In Fig. 5e we plot the steady-state Karman-
Pohlhausen model and the last computed time step shown in
Fig. 5a. The disturbance under the foil is very close to the
steady-state profile of the Karman-Pohlhausen model.

These plots illustrate that the steady-state profiles, as given
by the Karman-Pohlhausen model, give good predictions at
large Reynolds numbers of the true steady-state film profiles
(if the profile is continuous). On the other hand, the transient
profiles, although they have qualitative similarities, have
quantitative differences.

VI. Conclusions
The purpose of this investigation was to study the effect of

an electrostatic field on a liquid film flowing within a rotating
conical radiator, and to develop model equations for the flow
which will allow easy predictions of the deformation of the
interface and of the pressures under the charged foil. We have
shown that the presence of the electric field can change the
stability of the film, and that it can, for realistic values of the
parameters, produce a negative pressure under the foil, which
would stop a leak out of a puncture. The Karman-Pohlhausen
model has been shown to be a reliable model to predict the
deformation of the interface and the pressure in the steady
state. For time-dependent flows, the Karman-Pohlhausen model
shows many similarities to the exact solution, but there are
many quantitative differences. For the purpose of the ELFR,
the steady-state result is very important, since we can expect
the downstream transient behavior to be washed away with
the film, and hence, have little effect on the design of the
ELFR. Of course, if a second hole were to occur upstream
of the first, this transient flow would affect the behavior of
the film under the first foil, but again this disturbance would
be washed away.

We have neglected surface tension in our study of the ev-
olution of a disturbance along the film. Although, as noted
in Fig. 2, it can have a significant effect on the stability of the
film, we expect (except for regions of very large curvature,
e.g., near a shock) it to have very little effect on the shape
of the steady-state profiles for the liquids we are considering.
On the other hand, it is expected to have a significant effect
in determining at what pressures the liquid will actually leak
from a puncture. The effect of surface tension will be to stop
a leak because of the large additional negative capillary pres-
sure it contributes at the puncture. Therefore, our predictions
are strongly on the conservative side, since they do not include
this large negative capillary pressure at the hole (~105 Pa).
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